Spatial distribution of opioid overdoses, as represented by EMS naloxone use

Christopher W. Ryan, MD, MS
Medical Director, Broome County Health Department Susquehanna Regional EMS Council
Binghamton University Department of Geography
SUNY Upstate Medical University Binghamton Clinical Campus

October 5, 2016

Background

- opioids, heroin, and overdose
- naloxone and its utility as an indicator of opioid overdose
- the Susquehanna Emergency Medical Services Region (SREMS)
- the SREMS electronic patient care report (ePCR) database

Spatial aspects

- Areal or lattice data versus point pattern data

Spatial aspects

- Areal or lattice data versus point pattern data
- Research question: does the spatial point pattern of EMS calls involving naloxone administration demonstrate aggregation or clustering, over and above the aggregation to be expected of EMS calls in general?

Spatial aspects

- Areal or lattice data versus point pattern data
- Research question: does the spatial point pattern of EMS calls involving naloxone administration demonstrate aggregation or clustering, over and above the aggregation to be expected of EMS calls in general?
- This was a study of clustering, not a search for clusters

Assessing spatial point patterns for clustering

- Clustering compared to what?

Assessing spatial point patterns for clustering

- Clustering compared to what?
- Assessment strategies
- G function: nearest-neighbor distances
- F function: empty-space distances
- K and L functions: number of events within distance r of an event
- others

Methods

- 63 EMS agencies were invited to participate
- agencies with fewer than 50 total calls during the study period were excluded
- 13 agencies participated, including all the largest and most active
- study period: 9 September 2012 to 9 February 2014
- incident locations were geocoded in ArcGIS 10.3
- TIGERline street address files for the three counties
- county boundaries shapefile from CUGIR
- projected in UTM 18 N with NAD 1983, distances in meters
- match accuracy set at 79\%, with no further manual matching
- duplicate locations eliminated
- statistical analysis done in R with spatstat package

Summary description of the analytical dataset

	cases	controls	sum
matched	198	34571	34769
tied	4	1449	1453
unmatched	45	8671	8716
unique matched	183	10643	10826

Approximate non-duplicated locations of EMS calls

Monte Carlo simulations

- sample from the 10,826 observed call locations?

Monte Carlo simulations

- sample from the 10,826 observed call locations?
- sample from a

2-dimensional density

Monte Carlo simulations

- sample from the 10,826 observed call locations?
- sample from a

2-dimensional density

- the problem with roads: spurious clustering

Monte Carlo simulations

- sample from the 10,826 observed call locations?
- sample from a

2-dimensional density

- the problem with roads: spurious clustering
- created 500 point patterns, each with 183 locations sampled randomly

Monte Carlo simulations

- sample from the 10,826 observed call locations?
- sample from a

2-dimensional density

- the problem with roads: spurious clustering
- created 500 point patterns, each with 183 locations sampled randomly
- calculated F, G, inhomogenous K and L functions from each

Monte Carlo simulations

- sample from the 10,826 observed call locations?
- sample from a

2-dimensional density

- the problem with roads: spurious clustering
- created 500 point patterns, each with 183
 locations sampled randomly
- calculated F, G, inhomogenous K and L functions from each
- the 500 replications of each test statistic (function) served as its null sampling distribution

Results: nearest neighbor distance

Results: empty space function

Results: L function from inhomogeneous K function

Conclusions and limitations

- Conclusions
- naloxone EMS calls appear more highly clustered than expected if they were merely a random sample of all call locations

Conclusions and limitations

- Conclusions
- naloxone EMS calls appear more highly clustered than expected if they were merely a random sample of all call locations
- Limitations
- Naloxone administration is a useful but imperfect indicator of opioid overdose
- Participation by EMS agencies was not universal
- Duplicate locations
- Geocoding was imperfect and incomplete
- The point patterns were highly inhomogeneous

Further questions

- If indeed the naloxone cases are spatially aggregated-why?
- What is the pattern-generating spatial process?
- first-order versus second-order phenomena
- likely both
- What are the predictors of a naloxone occurrence in a particular location?
- What is the spatial relationship between incident location and home location?

Acknowledgements

Many thanks to the dedicated EMS providers in the Susquehanna EMS Region-skilled clinicians, and the best field epidemiology team one could ask for.

